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A B S T R A C T   

Guayule (Parthenium argentatum, A. Gray), a perennial desert shrub, produces high-quality natural rubber and is 
targeted as a domestic natural rubber source in the U.S. While commercialization efforts for guayule are on- 
going, crop management requires plant growth monitoring, irrigation requirement assessment, and final yield 
estimation. Such assistance for guayule management could be provided with remote sensing (RS) data. In this 
study, field and RS data, collected via drones, from a 2-year guayule irrigation experiment conducted at Mar
icopa, Arizona were evaluated. In-season field measurements included fractional canopy cover (fc), basal (Kcb) 
and single (Kc) crop coefficients, and final yields of dry biomass (DB), rubber (RY), and resin (ReY). The ob
jectives of this paper were to compare vegetations indices from MS data (NDVI) and RGB data (triangular 
greenness index, TGI); and derive linear prediction models for estimating fc, Kcb, Kc, and yield as functions of the 
MS and RGB indices. The NDVI and TGI showed similar seasonal trends and were correlated at a coefficient of 
determination (r2) of 0.52 and a root mean square error (RMSE) of 0.11. The prediction of measured fc as a linear 
function of NDVI (r2 = 0.90) was better than by TGI (r2 = 0.50). In contrast to TGI, the measured fc was highly 
correlated with estimated fc based on RGB image evaluation (r2 

= 0.96). Linear models of Kcb and Kc, developed 
over the two years of guayule growth, had similar r2 values vs NDVI (r2 = 0.46 and 0.41, respectively) and vs TGI 
(r2 = 0.48 and 0.40, respectively). Final DB, RY, and ReY were predicted by both NDVI (r2 = 0.75, 0.53, and 
0.70, respectively) and TGI (r2 

= 0.72, 0.48, and 0.65, respectively). The RS-based models enable estimation of 
irrigation requirements and yields in guayule production fields in the U.S.   

1. Introduction 

Guayule (Parthenium argentatum, A. Gray), a perennial shrub native 
to the desert of northcentral Mexico and southern Texas, produces high- 
quality natural rubber used in tire manufacturing, as well as natural 
resin for other industrial products (Rasutis et al., 2015). Commerciali
zation efforts for guayule have been on-going in the US Southwest for 
many years (Ray et al., 2010). Acreages of traditional crops in the re
gion, such as cotton and alfalfa, continue to decline (Lahmers and Eden, 
2018), coinciding with on-going drought and associated water shortage 
concerns (Mpanga and Idowu, 2021). Guayule is seen as a suitable 
water-savings alternative crop due to its ability to withstand prolonged 

periods without water application (Allen et al., 1987). Nevertheless, 
guayule production in the area remains limited. Unlike annual crops, 
guayule is grown for a two-year period before harvest, which can 
complicate crop management decisions. Thus, among the needs for 
increasing commercial guayule production is having adequate technol
ogies that assist growers with crop and irrigation management. Today’s 
growers are already using tools such as remote sensing and scientific 
irrigation scheduling for traditional crops. These applications should be 
provided for guayule crop management, as well. 

During 2018–2020, a guayule experiment was conducted at Mar
icopa, Arizona to evaluate the growth and yield response to variable 
water application rates using subsurface drip (SDI) and furrow irrigation 
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for direct-seeded guayule (Elshikha et al., 2021). During the two years of 
continuous growth, guayule crop evapotranspiration (ETc) was calcu
lated for two well-watered treatments with furrow and SDI using a soil 
water balance method. The ETc data for the treatments were used to 
assess the single (Kc), basal (Kcb), and soil evaporation (Ke) coefficients 
over the two-year study. In addition, time-based, growth stage curves of 
Kc and Kcb were developed for the spring-planted guayule, providing the 
first known guayule curves for applications using the FAO56 procedures 
(Allen et al., 1998). However, the limitations of these locally-derived 
crop coefficients and the related plant growth parameters (PGP), e.g., 
fractional canopy cover (fc) are that they may be relatively site and 
climate specific and, thus, not necessarily directly transferrable to other 
cropping areas and conditions. For example, guayule is known to have 
two distinctive planting seasons (fall and spring) in Arizona (Coffelt and 
Ray, 2010; Hunsaker and Elshikha, 2017). Because of different climatic 
conditions, time-based Kcb and Kc curves are likely to be different for 
spring and fall plantings, especially during guayule’s first year of 
growth. In spring, plants are subjected to increasing climatic conditions 
(temperature and solar radiation), while in fall they experience 
declining climatic effects during winter months. Even when guayule is 
planted in the same season, initial growth and development could vary 
in time due to different seasonal climatic conditions. 

Remote sensing (RS) of vegetation index (VI) offers a means to es
timate fc and crop coefficients without a reliance on time-driven curves 
(Hunsaker et al., 2005; Johnson and Trout, 2012). The foundational 
basis is that certain VIs, mathematical combinations of two or more 
spectral bands, are shown to be highly correlated to green vegetation 
and therefore correlate well to parameters such as fc and Kcb (Pocas 
et al., 2020). Adapting the locally-derived guayule Kc and Kcb data from 
Elshikha et al. (2021) based on VI would be more practical for use with a 
different planting date, planting method, and climate. Remote sensing 
data can be collected via satellites, ground sensors, airplanes or drones 
carrying multispectral (MS) sensors and RGB (Red-Green-Blue) cameras. 
Certain RS VIs, in the form of normalized difference vegetation index 
(NDVI) and the soil adjusted vegetation index (SAVI), have been utilized 
to predict Kcb and improve ETc estimation and irrigation planning 
(Bausch, Neale, 1989; Bausch, 1995; Jayanthi et al., 2001; Johnson 
et al., 2003; Neale et al., 2003; Hunsaker et al., 2005; Johnson and 
Trout, 2012). The studies also reported the capability of RS-based Kcb to 
account for the variation in plant growth caused by variable weather 
conditions and plant health (disease, weed and insect infestation). Some 
studies have indicated that MS VIs can be used to predict PGP, such as fc, 
and forecast final biomass and yield (Vina et al., 2004; Mondal and Basu, 
2009; Li et al., 2010; Coelho et al., 2018; Zhang et al., 2021; Ji et al., 
2021). Although ground-based sensors are simple to operate, they cover 
only small areas of the field, and they are time-consuming and 
labor-intensive. On the other hand, satellite imagery provides large 
coverage area. However, if RS data is used for management decisions, 
high spatial and temporal resolution is often required, which may not be 
available through satellites. Aerial data through helicopters and air
planes are limited by the cost and unexpected changes in weather 
conditions. 

Some of the MS-based platform limitations may be overcome 
through the use of unmanned aircraft systems (UAS), which have gained 
the interest of researchers and farmers due to their flexibility and high 
spatial resolution (Yan et al., 2019; Campos et al., 2019; Xu et al., 2020). 
UAS carrying multispectral and RGB (red, green, blue) cameras have 
been indicated to be appropriate for crop growth and yield monitoring 
(Lu, 2005; Torres-Sanchez et al., 2014; Huang et al., 2016; Kanning 
et al., 2018; Li et al., 2018a; Hlatshwayo et al., 2019; Yang et al., 2020; 
Zhang et al., 2021). Many studies have shown that RGB images can 
result in accurate estimation of fc for a wide range of vegetation 
coverage and using various image resolutions (Chen et al., 2016; Duan 
et al., 2017; Li et al., 2018b; Yan et al., 2019; Jiang et al., 2020). Studies 
by Hunt Jr. et al. (2005, 2011, 2013) have indicated that the triangular 
green index (TGI), an RGB index, is well-correlated with plant 

chlorophyll content and biomass. As a low-cost alternative to MS data, 
RGB images have been utilized to predict multispectral indices such as 
NDVI (Costa et al., 2020). However, the vast majority of prediction 
equations available for PGP (e.g., fc, and biomass) are based on MS VI 
indices (such as NDVI). Therefore, MS-based PGP-VI relations are 
already available for many crops, whereas RGB-based VI relations are 
less developed. 

Another RS application that could potentially assist guayule growers 
with decision-making is prediction of final yields using MS and/or RGB 
data. Such information could help growers plan post-harvest logistical 
operations (e.g., scheduling transportation and storage facilities). 
Currently, estimation of guayule dry biomass (DB), rubber yield (RY), 
and resin yield (ReY) can be made prior to final harvest by collecting 
whole plant samples that are then dried, ground, and analyzed for the 
secondary rubber and resin products (Cornish et al., 2013). Some 
empirical relations have been developed to non-destructively estimate 
guayule yields based on plant volume measurements (Downes and 
Tonnet, 1985). In either case, these methods are more cumbersome, 
time consuming, and costly compared to using predictions based on 
inexpensive drone data acquisitions. The MS (NDVI) and RGB (TGI) 
indices have been used to estimate biomass and final yields for other 
crops (Hunt Jr. et al., 2005; Zhao et al., 2007; Brandao et al., 2015; Ji 
et al., 2021) but not for guayule. 

As indicated, no RS methods have yet been adapted for irrigation and 
crop management of guayule. Therefore, a primary goal of this study is 
to provide an initial indication of NDVI and TGI applications in guayule. 
The specific objectives of this study are to (1) compare MS (NDVI) and 
RGB (TGI) trends and relationships in guayule; (2) develop VI-based and 
RGB image-based estimates of fc; (3) derive Kcb and Kc as functions of 
NDVI and TGI; and (4) develop guayule DB, RY, and ReY estimation 
equations for NDVI and TGI. 

2. Materials and methods 

2.1. Irrigation experiment 

An irrigation experiment was conducted to study the effects of irri
gation rate and method (subsurface drip [SDI] and furrow [F]) on the 
growth and yield of direct-seeded guayule (Elshikha et al., 2021). The 
guayule crop was grown for ≈two years until harvested. It was planted 
in late-Apr. 2018 at two-field sites in Arizona: one site was a 1.0-ha field 
at The University of Arizona, Maricopa Agricultural Center in Maricopa, 
Arizona (32.67 ºN lat; 111.63 ºW long; 482 m a.s.l.) and the other site 
was in Eloy, Arizona. Because RS data collection was very limited at the 
Eloy site, that field experiment is not included in this paper. The Mar
icopa field consisted of 18, 75-m long plots that were 6.1-m wide (six 
rows). Irrigation treatments, irrigation scheduling, and field data 
collection are described in Elshikha et al. (2021). Briefly, the guayule 
experiment included five treatments of irrigation amount (50–150% of 
estimated ETc, denoted as D50-D150) using SDI and one treatment with 
100% of ETc using furrow irrigation (denoted as F100). The experi
mental design was a randomized complete block in three blocks. Actual 
ETc was measured for the D100 and F100 treatments using periodic 
measurements of soil water content via neutron moisture meter and 
measured irrigation and precipitation amounts. The daily soil water 
balance methodologies used to derive Kc, Kcb, and Ke based on the ETc 
measurements were also described by Elshikha et al. (2021). The gua
yule was harvested in March 2020 after ≈ 23 months of growth. 
Experimental measurements of guayule cover and yields are described 
in Section 2c below. 
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2.2. Remote sensing platforms and vegetations indices 

Remote sensing data were collected during the 2018–2020 irrigation 
experiment at Maricopa using two RS platforms. The first platform was a 
drone (Phantom 4 Pro V2.0,1 Da-Jiang Innovations [DJI], Nanshan 
District, China), which collected RGB images at 30–60 m above ground 
level. The drone was equipped with a 25-mm, 20-megapixel CMOS de
tector with a mechanical shutter. The images (R, G and B values) were 
used to calculate TGI by Pix4D 2019 (a photogrammetry software 
technology, Prilly, Switzerland), which is based on Hunt Jr. et al. (2011) 
as follows:  

TGI = − 0⋅5 x [(668− 475) (R - G) - (668− 560) (R - B)]                       (1) 

where blue (B), green (G), and red (R) are the waveband reflectance 
values for the respective bands. The 668, 475 and 560 are centers of the 
wavebands for the R, G and B bands, respectively. RGB images were used 
to estimate fc in each treatment plot using the following steps: 1) con
version of RGB image data to hue, saturation, and intensity (HSI) color 
space (Thorp and Dierig, 2011); 2) classification of the hue channel into 
plant and soil classes via an expectation maximization classification 
algorithm in OpenCV; and 3) dividing the number of pixels classified as 
plant by the total number of pixels in each plot. 

The second platform was a drone (Inspire 2, DJI, Nanshan District, 
China) carrying a multispectral MicaSense sensor: a RedEdge sensor 
which had five bands (Blue [475 nm], Green [560 nm], Red [668 nm], 
Red Edge [717 nm], Near Infrared [nir, 842 nm], which was replaced 
with a newer MicaSense Altum sensor with the same five bands and a 
thermal infrared (LWIR) band (8000–14000 nm). Crop canopy reflec
tance data were used to compute the commonly-used NDVI (Tucker, 
1979), which was developed to maximize sensitivity to the vegetation 
characteristics while minimizing soil background reflectance and at
mospheric effects. The NDVI was computed by Eq. (2), utilizing the in
formation in the red (668 nm center, 16 nm bandwidth) and nir (842 nm 
center, 57 nm bandwidth).  

NDVI = (ρnir - ρred) / (ρnir + ρred)                                                      (2) 

where ρnir and ρred are spectral reflectance in the nir and red regions of 
the electromagnetic spectrum, respectively. 

The RS data collection for both platforms was begun in late Jun. 
2018 and continued through early Mar. 2020 (just prior to harvest). 
Acquisition intervals for the two platforms varied from ≈weekly to tri- 
weekly, where the longer intervals occurred during late fall through 
late winter 2018–2019, when guayule growth and water use were low 
(Elshikha et al., 2021). On most RS dates, the RGB drone was flown first 
at about hour 1200, immediately followed by the MS drone flight. 
Drones were flown at 61 m above ground level, which provided high 
spatial resolution. 

2.3. Guayule plant cover and yield measurements 

As described in Elshikha et al. (2021), manual measurements of 
canopy width (W) were made ≈once a month in all irrigation treat
ments. The fc (as a percent) was calculated using Eq. (3):  

fc (%) = (Wew x Wns)/(1/Pd) x 100                                                      (3) 

where: 
Wew is plant width in the east-west direction, m. 
Wns is plant width in the north-south direction, m. 
1/Pd is planting area (1/plant density [Pd]), m2. 

Whole plant samples were harvested in early-Mar. 2020, ≈ 23 
months after planting. For the plant samples, three 1–3 m2 sections from 
each plot were hand-harvested at all sites. All plant harvests were 
limited to the inner four rows of each plot to minimize any border effects 
on plant growth. Plant samples were prepared and analyzed for resin 
and rubber concentrations, determined using accelerated solvent 
extraction and a Soxhlet-based nir spectroscopy method that has high 
correlation to other rubber analysis methods (Suchat et al., 2013; 
Placido et al., 2020). The treatment means for final DB, RY, and ReY 
were provided in Elshikha et al. (2021). 

2.4. Statistical analysis 

The following linear prediction models were developed using 
measured field experiment data, as well as data of RGB images, TGI, and 
NDVI, collected from drones:  

1) NDVI vs TGI, including RS data from late Jun. 2018 (about two 
months after planting) through early Mar. 2020 (just prior to 
harvest).  

2) Measured fc (%) vs NDVI and vs TGI, including data from late Jun. 
2018 (≈20–25% measured fc for all treatments) through early Nov. 
2018 when measured maximum fc (97–100%) was obtained for all 
treatments except the D50 (82% average fc).  

3) Measured fc (%) vs estimated fc based on RGB images, including data 
as in 2) above.  

4) Measured Kcb and Kc vs NDVI and vs TGI, including data from late 
Jun. 2018 through early Mar. 2020.  

5) Measured DB, RY, and ReY vs NDVI and vs TGI, based on the average 
NDVI and TGI data for each treatment plot (18 plots total) collected 
during the second year’s active growth period (i.e., late Apr. to late 
Nov. 2019). 

All linear regression analyses were computed using the Data Analysis 
Tools in Microsoft Excel (2019). In addition to the regression coefficient 
of determination (r2) for evaluating goodness of fit, the root mean square 
error (RMSE) was calculated as an indicator of the prediction error. 

3. Results and discussion 

3.1. NDVI and TGI indices 

The NDVI for direct-seeded guayule planted on the sandy loam soil in 
Maricopa increased rapidly during the first year of growth starting in 
late Jun. 2018 (Fig. 1a). The NDVI had relatively lower values for the 
lowest water application rate (D50) and higher values for the highest 
water application rates (D125-D150). The NDVI reached maximum 
values (0.77–0.80 for D125 and D150) towards the end of Sep. 2018 and 
it remained at about the same level until early-Nov. The NDVI then 
decreased after Nov. 2018 during the winter dormancy period and 
decreased to a minimum value of about 0.40 in early Feb. 2019. In 
general, there was no significant difference in the NDVI between the 
irrigation treatments during the first year of growth. In the second year, 
however, the irrigation treatments diverged from mid-Apr. to mid-Oct. 
2019, which is the period of most active growth (Fig. 1b). The higher 
irrigation rates (D100-D150 and F100) had the higher NDVI values 
compared to the lower water treatments (D50-D75). During the second 
winter dormancy period (≈ early Nov. 2019 to Mar. 2020), NDVI 
decreased to values less than 0.40 for treatments and treatment differ
ences were not significant. Sudden decreases in NDVI were observed 
twice in the second dormancy period (late Oct. to mid-Nov. 2019 and 
early to mid-Jan. 2020). The rapid reductions in NDVI might have 
occurred because of a pronounced change in minimum air temperatures 
during these two periods, ≈ 4–6 ◦C cooler compared to the temperatures 
in the weeks before and after. Lopez-Bernal et al. (2020) stated that 
cold-induced dormancy in winter can be reversed after 1–2 weeks of 

1 Mention of trade names or commercial products in this article is solely for 
the purpose of providing specific information and does not imply recommen
dation or endorsement by the U.S. Department of Agriculture. USDA is an equal 
opportunity provider and employer. 
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exposure to warm conditions. Therefore, subsequent periods of warmer 
air temperatures may have caused the plants to temporarily break 
dormancy and shift into more active growth. 

The RS data collected over guayule from late Jun. 2018 to harvest 
(Mar. 2020) indicated that the NDVI was linearly related to the RGB- 
based TGI having a regression r2 of 0.52 and a RMSE of 0.11 (Fig. 2 
and Table 1). The slope and intercept coefficients of the model suggest 
that NDVI will be above the TGI value by about 0.08 early in the season 
to about 0.14 at maximum TGI values. While the overall trends of NDVI 
and TGI growth were similar, point to point variations were large. In 
particular, TGI responded differently when values for NDVI were above 
0.70, which occurred during Sep. to Nov. of 2018 (Fig. 1a). The data 
suggest that the TGI color may have been affected differently by canopy 
shadows causing errors in separating soil from plant pixels. While 
Fuentes-Peailillo et al. (2018) also report a general consistency between 

TGI and NDVI data, they point out that RGB data is subject to mis
identifying crop vegetation, particularly in the row zone. Costa et al. 
(2020), however, reported a visible NDVI based on RGB data that was 
highly correlated to MS NDVI (r2 = 0.85 and 0.82) for all growth periods 
of citrus and sugarcane crops, respectively. By contrast, the RGB-based 
indices used by (Marin et al., 2020) did not correlate well with NDVI 
during the active growing period of turfgrass (r2 = 0.31–0.58). Here, it is 
indicated that TGI as collected via an inexpensive drone provides a 
reasonable association with the guayule NDVI data trend, though TGI 
tends to underestimate the seasonable data spread observed for NDVI. 

3.2. Remote sensing and guayule cover relationships 

The regression model for fc vs NDVI was linear with an r2 value of 
0.90 (Fig. 3a) and a RMSE of 9.3% (Table 1). The equation presented is 
only valid during guayule growth periods prior to canopy closure. Thus, 
a guayule grower using this NDVI equation to model percent cover 
would need to visually-assess when the crop is at full cover. Once full 
cover is achieved, the grower could then assume 100% cover in 
modeling subsequent irrigation scheduling. 

Tenreiro et al. (2021) developed NDVI-fc regression models with 
agricultural crop data from 19 different studies, including data of 
Er-Raki et al. (2007) and Johnson and Trout (2012). They concluded 
that the models they developed (both linear and quadratic) were 
adequate for most of the crops presented, as r2 values were generally 
above 0.75 and RMSE were less than 20%. In comparison with the 
Tenreiro et al. (2021) models, the guayule NDVI-fc model appears to be 
as statistically robust to those developed for many agricultural crops. In 
particular, the linear equation in Fig. 3a has similar regression co
efficients to those reported by Johnson and Trout (2012), obtained for a 
variety of vegetable crops, as well as to those reported for cotton (Neale 
et al., 2021). 

The equation of fc vs TGI had an r2 = 0.50 and RMSE = 20.9% 

Fig. 1. Normalized difference vegetation index (NDVI) for direct-seeded gua
yule during the first (a) and second (b) years of growth (Jun. 2018-Feb. 2019 
and Apr. 2019-Mar. 2020, respectively) in Maricopa, AZ. The letters D and F 
represent subsurface drip and furrow irrigation, respectively. The numbers 
following the letters D and F are irrigation rates (i.e., percent replacement of 
crop evapotranspiration [ETc]). 

Fig. 2. Relationship between NDVI and the RGB-based triangular greenness 
index (TGI) for direct-seeded guayule during growth periods of the first and 
second years (i.e., Jun. 2018 through Mar. 2020) in Maricopa, AZ. 

Table 1 
Summarized guayule linear regression equations: normalized difference vege
tation index (NDVI) as a function of triangular greenness index (TGI); fractional 
canopy cover (fc) as functions of NDVI and TGI; fc as a function of RGB; basal 
(Kcb) and single (Kc) crop coefficients as functions of NDVI and TGI; and dry 
biomass (DB), rubber yield (RY), and resin yield (ReY) as functions of NDVI and 
TGI. The coefficient of determination (r2) and the root mean square error 
(RMSE) are shown for each equation.  

Parameter Equation r2 RMSE Valid during 

NDVI NDVI = 0.07 + 1.11 * 
(TGI) 

0.52 0.11 1st 2 years of 
growth 

fc (%) fc = 127.8 * (NDVI) – 
18.4 

0.90 9.3 early growth to full 
cover 

fc = 212.4 * (TGI) – 19.9 0.50 19.9 
fc = 1.03 * (fc [RGB]) 
+ 14.5 

0.96 6.8 

Kcb Kcb = 1.11 * (NDVI) 
+ 0.39 

0.46 0.19 early growth to 
harvest 

Kcb = 1.72 * (TGI) 
+ 0.32 

0.48 0.19 

Kc Kc = 1.11 * (NDVI) 
+ 0.44 

0.41 0.21 

Kc = 1.68 * (TGI) + 0.38 0.40 0.22 
DB (Mg ha− 1) DB = 103.5 * (NDVI) – 

27.8 
0.75 3.10 harvesta 

DB = 88.2 * (TGI) – 13.5 0.72 3.20 
RY (Mg ha− 1) RY = 2.61 * (NDVI) – 

0.37 
0.53 0.13 

RY = 2.17 * (TGI) 
+ 0.02 

0.48 0.32 

ReY (Mg 
ha− 1) 

ReY = 8.63 * (NDVI) – 
2.13 

0.70 0.29 

ReY = 7.25 * (TGI) – 
0.89 

0.65 0.31  

a Assuming a prototypical late-winter or early spring guayule harvest. 
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(Fig. 3b and Table 1). Thus, the RMSE for fc vs TGI was over twice that 
for fc vs NDVI. Since TGI did not correlate strongly with NDVI, it was 
expected that the fc vs TGI relationship would be less effective than fc vs 
NDVI. Problems resulted due to the mismatch of TGI with fc during 
early-season (25–30% measured fc) and a decline in TGI when measured 
fc reached 92–100% in plots. As indicated earlier, the TGI has been 
found to be prone to errors in soil and vegetation identification (Fuen
tes-Peailillo et al., 2018). 

Manually measured fc vs. RGB-based cover (fc RGB) during the first 
year of growth is illustrated in Fig. 4. The linear equation had an r2 value 

of 0.96 with a RMSE of 6.8% (Table 1). Since fc RGB is based on the hue 
values, or plant greenness, it followed guayule canopy cover develop
ment well during the first year. While the linear fit was good, the fc RGB 
model under-estimated the measured fc and thus it does not quantify the 
measured fc adequately. Others, such as Lee and Lee (2011) with rice 
and Ashapure et al. (2019) with cotton, developed similar RGB-based fc 
models. Contrary to the guayule model, those studies reported near 1:1 
relationships between measured and the RGB-based models. The cotton 
study (Ashapure et al., 2019) indicated RMSE of estimated fc less than 
3%. Both studies recommended that RGB-based estimation of fc can be 
used as an affordable alternative to MS-based models. 

3.3. NDVI- and TGI-based crop coefficients 

Linear curves of Kcb vs NDVI and Kc vs NDVI, developed using data 
from late Jun. 2018 through early Mar. 2020, are shown in Fig. 5a and b, 
respectively. The r2 were 0.46 and 0.41 and RMSE were 0.19 and 0.21 
for Kcb and Kc, respectively (Table 1). The initial NDVI measurements in 
late Jun. 2018 were slightly less than 0.20 and corresponded to crop 
coefficient values of about 0.62 and 0.67 for Kcb and Kc, respectively. 
Maximum values for Kcb during the first year growing period occurred 
between mid-Sep. to early Nov. 2018 and averaged 1.16, corresponding 
to maximum NDVI values of about 0.75 (Fig. 5a). Appreciable soil 
evaporation occurred for the F100 (furrow) treatment on several dates 
during the first year growing period leading to some high values for Kc 
(1.19–1.35) prior to mid-Sep. 2018 (Fig. 5b). During the guayule winter 
dormancy periods in 2018–2019 and 2019–2020 (late Nov. to early 
Mar.), NDVI were at minimum values (typically 0.30–0.50), whereas Kcb 
values varied from about 0.45–1.25 during these periods. Thus, much of 

Fig. 3. Fractional canopy cover (manually measured, fc [m]) vs. NDVI (a) and 
TGI (b) for direct-seeded guayule through canopy closure during the first year 
(late Jun.-early Nov. 2018) in Maricopa. 

Fig. 4. Fractional canopy cover (manually measured, fc [m]) vs. RGB-based fc (fc 

[RGB]) for direct seeded guayule during the first year’s active growth period 
(Apr.-Nov. 2019) in Maricopa. 

Fig. 5. Basal and single crop coefficient (Kcb and Kc) as a function of NDVI for 
direct-seeded guayule during the two years of growth (June 2018-Mar. 2020) 
in Maricopa. 
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the scatter about the curves is due to a discontinuity of the relationship 
between Kcb and NDVI during winter dormancy (i.e., generally, the 
values falling below the curve fits) versus the active growing periods (i. 
e., values near or above the curve fits). Generally, the NDVI tracked Kcb 
somewhat better than Kc because of the incidence of early season soil 
evaporation for the F100 treatment. Despite the positive intercepts for 
the Kcb and Kc vs NDVI equations, the regression slopes (1.10–1.11) are 
consistent with NDVI relationships for other crops, e.g., Kcb of 1.09 for 
corn (Neale et al., 1989) and 1.07 for wheat (Er-Raki et al., 2007). 

The Kcb and Kc vs TGI relationships (Figs. 6a and 6b, respectively, 
and Table 1) were comparable to those for NDVI in terms of the r2 (0.48 
and 0.40, respectively) and RMSE (0.19 and 0.22, respectively). This 
result was somewhat surprising given the differences between NDVI and 
TGI (Fig. 2) and the better relationship of fc vs NDVI than vs TGI through 
early Nov. 2018 when full cover for treatments occurred (Figs. 3a and 
3b, respectively). However, highest Kcb occurred during the spring- 
summer of the second year growing period (2019–2020). In that 
period, NDVI values declined appreciably compared to those observed in 
Sep.-Nov. 2018. On the other hand, TGI declined to a lesser extent 
during spring-summer compared to TGI values observed in Sep.-Nov. 
2018. In general, TGI appeared to be in better agreement with the 
higher Kcb values during both the first- and second-year growing periods 
compared to NDVI. Comparative studies that assess the crop coefficient 
as a function of both NDVI and TGI were not found in the literature. 

3.4. Prediction of guayule yields 

The regression equations for final dry biomass (DB), rubber yield 

(RY), and resin yield (ReY) as functions of NDVI and TGI are given in 
(Figs. 7 and 8, respectively, and Table1). Both the MS and RGB indices 
were robust indicators of DB, as evidenced by r2 values for NDVI and TGI 
of 0.75 and 0.72, respectively, and RMSE less than 3.2 Mg ha− 1 (or about 
a 10% error). As expected, the NDVI and TGI fits were not as precise for 
ReY (r2 =0.70 and 0.65, respectively) and RY (r2 0.53 and 0.48, 
respectively) compared to the DB equations. The imprecision occurs 
because the indices cannot detect the differences in resin or rubber 
content. Still, the NDVI and TGI equations gave reasonable estimates of 
measured rubber and resin yields (within about 10–30% of measured). 
However, an ability of NDVI and TGI indices to adequately estimate the 
guayule DB ahead of final harvest would be useful information for 
guayule growers in terms of planning harvest and post-harvest 
operations. 

4. Conclusions 

The study examined the use of multispectral (MS) and RGB indices to 
estimate plant cover, crop coefficients, and final yields of direct-seeded 
guayule in the U.S. Southwest. The results indicate that RGB (TGI) and 
MS NDVI data collected by drone could provide valuable assistance for 
managing guayule irrigation and a priori estimation of final yields. The 
NDVI was highly correlated to plant cover fraction during the first year 
of growth, prior to treatments achieving full cover. Additionally, it was 
shown that NDVI and TGI gave reasonable estimated guayule crop co
efficients during the two years of growth, including the winter dormancy 
period when the crop coefficients rapidly decline, as well as during the 
following active growing period. We conclude that the NDVI-based plant 
cover and TGI-based crop coefficient models could be used with 
reasonable confidence in guayule production fields in different areas of 
the U.S. Southwest. These crop parameters are essential inputs in 
determining crop evapotranspiration and irrigation requirements. Thus, 
the predictive capabilities of these parameters by NDVI and TGI data 
from drone would be a significant asset for managing guayule irrigation 
and optimization of agronomic production. As an alternative to using 
MS sensors for NDVI, less expensive RGB camera data could be used to 
estimate guayule NDVI by the provided NDVI vs TGI equation. However, 
this equation should be used with caution since NDVI was generally 
underestimated to some extent by TGI during the two years of guayule 
growth. The NDVI (or TGI) prediction equations of dry biomass, rubber 
yield, and resin yield provide information needed in planning harvest 
and post-harvest operations, such as labor, transportation, and storage, 
as well as planning rubber and resin extraction, which are time sensitive. 
The rate of advances in drones and sensor manufacturing technologies 
are expected to increase, while cost is expected to be reduced. These 
factors will help increase the viability and use of drone-sensor packages 
for guayule agronomic management and yield prediction. 

Fig. 6. Basal and single crop coefficient (Kcb and Kc) as a function of TGI for 
direct-seeded guayule during the two years of growth (June 2018-Mar. 2020) 
in Maricopa. 

Fig. 7. Prediction of dry biomass (DB), rubber yield (RY) and resin yield (ReY) 
using mid-season (April-Nov 2019) NDVI data for direct-seeded guayule grown 
in Maricopa. 
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