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ABSTRACT: The cost of feedstock is often a major barrier to
commercialization for lignocellulosic biofuels. Much of the
research on biofuel and biobased chemical production has focused
on the carbohydrate, lignin, and lipid components of biomass.
There are numerous opportunities for the use of lower-cost
feedstocks if more attention were devoted to the recovery and
utilization of the protein and other N-containing components. This
review compiles data from the last two decades on nonedible/
nonpalatable agricultural residues, deoiled seedcakes, bioethanol
and biogas residues, and food wastes, with a focus on the amounts
and types of N-containing components. Given the challenges of
removing N-containing compounds from biofuel intermediates
postconversion, a case is made for the extraction and purification
of proteins (and other N-containing compounds) from low-cost
lignocellulosic biomass before conversion to fuel. The goal of such
processes is to avoid difficult fuel upgrading steps while enhancing
the opportunities for additional biorefinery products and sustainable nitrogen cycles.

1. INTRODUCTION

Lignocellulosic biomass, with an annual production of 150−
170 Gt, is the most abundant biomass in the world with
numerous applications for biofuels and bioproducts.1 One of
the primary barriers to commercialization of biofuels from
lignocellulosic biomass is the high cost of the feedstock;2,3 it is
estimated that lignocellulosic biofuel production is two times
more expensive than the average wholesale oil price (1.19−1.4
USD/L compared to 0.55 USD/L of wholesale heating oil).4

According to the U.S. Department of Energy (DOE), the
feedstock contributes the largest fraction (up to 67−81%) of
the final fuel selling price.5 Some alternatives to traditional
crops are available to reduce production costs: low-cost
dedicated energy crops growing on marginal/degraded
lands,6,7 food/feed processing residues, and wastes from the
municipal and forest sectors.8,9 These feedstocks have some
advantages: lower processing costs (35−142 USD/t), con-
tinuous supply, local availability, and few existing applica-
tions.10 A biorefinery using these feedstocks offers significant
potential for a circular system for fuels and high-value
products.11

In the last two decades, different lignocellulosic biorefinery
approaches have been proposed based on different pretreat-
ment strategies and fractionation of pretreated biomass into
multiple streams (e.g., lignin, cellulose, hemicellulose, and their
hydrolysates) for the generation of value-added products at

different stages.12−14 Biochemical processing approaches based
on lignocellulosic-derived sugars are favored over other
biorefinery models due to milder processing conditions and
overall sustainability.15,16 The majority of research on
feedstocks for biofuel and biobased chemicals has focused on
carbohydrates, lignin, and lipids (the CHO-containing
fractions).17,18 Cellulose-based biorefinery concepts have
been developed.19,20 Proteins and other N-containing fractions
of biomass have received relatively little attention.21,22

After sugars, proteins and other N-containing compounds
represent up to ∼16% of the dry weight of lignocellulosic
biomass and are frequently the primary components in
biomass waste and pretreatment byproduct streams.2 In
2017, the global availability of agricultural residues and other
solid wastes reached 2.45 Gt23 and 2.12 Gt,24 respectively.
These materials are more likely to be disposed of by landfill or
simple incineration than to be used for bioenergymissing
biorefinery opportunities and risking pollution of water, soil,
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and air.25−27 One particularly impactful missed opportunity is
the recovery and reuse of nitrogen (N) for crop cultivation due
to the low number of low-cost and efficient methods for
protein extraction from lignocellulose28,29 and the limited
market demand for N-containing biorefinery byproducts.30

Currently, the increased production of crops for biofuels
requires production of more N-containing fertilizers using
fossil-based energy,31 which negatively affects the life-cycle
benefits of those biofuels.32 Landfilled/unused N-containing
biomass resources create their own emissions of nitrous oxide
(N2O).33 The production of chemicals containing -NH2
functionalities requires the use of fossil-derived coreagents
like ammonia (NH3), while such functionalities can be found
in protein-rich biomass.34 Recycling and valorization of N-rich
lignocellulosic biomass and wastes from agriculture, biofuel
production, and food processing have the potential to reduce
the costs of advanced biofuels, close the N cycle, and minimize
the need for fossil-energy-derived fertilizers and chemical
coreagents.
There are several reviews addressing utilization of N-rich

lignocellulose biomass for biofuels through thermochemical
and biochemical conversions35−38 and N (protein) recovery
and conversion into high-value-added compounds such as
food,28,39 bioplastics,40,41 adhesives,42 pharmaceutical inter-
mediates,43 hydrolysates,44,45 bulk chemicals,21 and enzymes
and bioactive compounds.46,47 Previous studies on protein
recovery have focused either on direct production of fuel or on
protein extraction. A review with emphasis on the availability
of low-cost feedstocks and N recovery before or after biofuel
production, with the goal of commercialization of biofuel based
on these feedstocks, is not still available. The purpose of this
review is to provide the characteristics and availability of low-
cost, N-containing biomass wastes relative to their potential as

biofuel feedstocks and a perspective about how to best utilize
them simultaneously as a N resource.

2. METHODS AND ORGANIZATION OF THIS REVIEW
The availability and composition of nonedible (or nonpalatable)
lignocellulosic feedstocks that contain meaningful amounts of N (at
least 0.5 wt % N on a dry basis) are grouped into agricultural residues,
deoiled seedcakes from biodiesel production, residues from other
biofuel processes (bioethanol and biogas), and food wastes. Algae and
animal byproducts were specifically excluded from the review as these
have been extensively reviewed elsewhere with respect to
protein.48−50 The forms of N in biomass-derived fuel intermediates
and the challenges of N-containing compounds in fuels are presented.
From there, schemes for removal of protein/nitrogen prior to
conversion into biofuel intermediates are evaluated as a way to
recover N for value-added use and avoid additional fuel intermediate
upgrading.

3. POTENTIAL SOURCES OF LOW-COST PLANT
FEEDSTOCK
3.1. Agricultural Residues As Feedstock. Agricultural

residues are carbon-based materials generated as a byproduct
during harvest and processing of agricultural crops. Currently,
the global annual production of agricultural residues is
estimated at 150 Gt.51 Not all agricultural residues can be
collected for use. Some residues should remain on the soil to
mitigate erosion, sequester carbon, and increase crop
productivity by adding N to the soil. Too much residue,
inefficient uptake, and/or inappropriate timing of residue
application can lead to additional N2O emissions. Agricultural
soils emit approximately 4.2 Mt N2O per year globally,
approximately 52% of the total anthropogenic N2O emis-
sions.52 The use of protein-rich agricultural residues for
bioenergy and chemicals, therefore, must be a carefully

Table 1. Current Availability, Biochemical Composition, N Content, and Higher Heating Value (HHV) of Different
Agricultural Residues

feedstock
protein
(wt %)

cellulose
(wt %)

hemicellulose
(wt %)

lignin
(wt %) N (wt %)

HHV (MJ/
kg)

availability
(Mt/yr) ref

alfalfa stem 15.6 27.5−30.6 10.5−12.2 15.5−17.5 2.4 17.1 Gray et al.53

cassava peel 5.3 21.6 5.4 1.2 12.7 224.0a Oladeji et al.54

Ismadjia et al.55

date palm leaf 6.0 38.2 28.2 22.5 1.2 12.0 Sait et al.56

sugar cane leaf 6.5−13 27.6 19.1 11.9 1.8 14.6 Patil et al.57

sugar cane
bagasse

18.2 33.3 30.1 26.4 1.6 20.0−24.0 250.0 Rabiu et al.58

sugar beet leaf 26.9 13−18 11−17 6.2 16.5 140.0 Godin et al.,59,60Aramrueang
et al.60

barley straw 3.0−6.0 38.5 19.6 25.9 0.7 16.6 51.3 Chen et al.61

Tye et al.62

tobacco residue 8.43 15.2 44.25 9.2 1.8 19.2 7.5 Pütün et al.63

milkweed stem 22.6 38.1 10.2 2.6 16.6 Campbell & Carr64

Emon & Seiber65

rice straw 3.0−5.0 34.0−43.7 10.0−22.0 15.2−28.7 1.2 15.6 731.0 Satlewal et al.66

Arshadi et al.67

cocoa pod husk 6.8−11.2 28.2 16.7 24.1 0.5 17.9 Olugosi et al.68

Sandesh et al.69

guar bagasse 5.9 26.5 15.9 1.0 20.2 Audu et al.70

guayule bagasse 8.4−12.5 11.5−23.3 9.1−14.6 22.5−28.8 1.3−2.1 22.7−27.1 4.0b Cheng et al.71

Cornish & Schloman72

sorghum leaf 7.7 28.5 29.2 3.9 17.6 59.0 Rorke & Gueguim Kana73

Reddy et al.74

chestnut cupulae 4.4 37.5 18.1 18.1 0.9 17.3 Kar & Keles75

aTotal of fresh cassava leaves and peels. bIt can be generated from 400 000 ha of guayule.
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managed trade-off. This section presents an overview of the
potential feedstocks with the highest relative current (or future
expected) production volumes: alfalfa stems, cassava leaves and
peels, date palm leaves, sugar cane bagasse and leaves, sugar
beet leaves and pulp, and guayule bagasse. Table 1 provides a
summary of the characteristics of these and other high-N
agricultural residues.
Alfalfa (Medicago sativa L.), the third most widely grown

crop in the US., has been considered as a feedstock for biofuel,
feed, and chemical production because it does not require
annual reseeding and can reduce the nitrate concentrations in
drainage water, prevent soil erosion, and reduce required
agricultural inputs like fertilizer and pesticides.76,77 In 2018,
U.S. production of alfalfa averaged 52.6 Mt at 1.28 t/ha.78

Alfalfa leaves, containing 26−30 wt % protein, are primarily
used as a forage for livestock. Alfalfa leaf meal has been
considered for human nutritional supplements. The relatively
high lignin content and low digestibility of alfalfa stems suggest
their use as a feedstock for biofuel production rather than for
feed, even with their 10−20 wt % protein content.79,80 The
proportion of leaves in alfalfa hay has been estimated at 40−60
wt % based on the maturity of the plant. Since leaves and stems
can be easily separated, utilization of stems for a second
income stream would make the alfalfa more economically
attractive. The stem fraction is also rich in cell wall
polysaccharides that can be used as a source of fermentable
sugars to produce ethanol and other bioproducts.80−82

Cassava (Manihot esculenta Crantz) is a tropical perennial
root crop where the roots contain about 30% starch and very
little protein (1−2%). Approximately 65% of global annual
cassava output is processed for human consumption; the rest is
used for bioethanol production and for the pharmaceutical
industry.83 The largest cassava processing waste streams are
sludge, peels, and leaves, which are usually discarded. In 2008,
the harvested area of cassava was approximately 1.87 × 105

km2 with a yield of cassava leaves of 1.2 kt/km2 with 20%
protein, giving a crude protein potential of 15.5 Mt.84,85

Cassava peels constitute about 19% of the fresh root weight.83

Much of the interest in expanding the nonfood applications for
cassava peels is the presence of toxic compounds, like
cyanogenic glucosides and linamarin, at higher concentrations
than in the root pulp. Direct disposal of cassava peels creates
environmental hazards due to the release of hydrogen cyanide
after hydrolysis by an endogenous linamarase.86 Recent studies
on the utilization of cassava peels have included use as a
feedstock for activated carbon, absorbents,87,88 supercapaci-
tors,89,90 and biofuels.86,91

The date palm (Phoenix dactylifera L.) is a tree adapted to
arid and semiarid regions. Approximately 105 million date
palm trees were being grown in 2014.92 Saudi Arabia generates
more than 200 kt/year of date palm biomass. Date palm trees
generate approximately 12 Mt/year of waste biomass in form
of dry leaves, stems, pits, and seeds.93 Approximately 20 kg of
dry leaves per tree is generated each year, containing 6% crude
protein. The calorific value of leaf waste is low (16.4 MJ/kg)
due to a high ash content,94 and the relative lignin content is
high (125 g/kg),95 making date palm leaves unattractive for
direct combustion or animal feed.
Sugar cane (Saccharum of f icinale L.), a tropical crop, is an

important feedstock for bioethanol production. Because of
their complex chemical composition and limitations on their
use as fodder for animals, the leaves are generally burned in the
fields, which damages the soil microbial diversity and raises

environmental concerns.96 A sizable portion (7−13% of the
dry matter) of the leaves and tops is composed of protein.
Sugar cane byproducts are currently used in production of
enzymes, ethanol, xylitol, protein cells, and organic acids.97−100

A study by Deepchand et al.101 showed that sugar cane leaves
can be a potential source of protein products. The high lignin
content of sugar cane tops and leaves makes them a good
target for pyrolytic bio-oil production.102

Sugar beet (Beta vulgaris L.) is a major sugar crop for food
and bioethanol production. In the U.S., nearly 72 Mt (wet
basis) of sugar beets were produced in 2010 with an average
yield of 62 Mg/ha.60 Sugar beet leaves account for
approximately 38% of the plant mass with 3.2% protein; this
represents a protein production potential of 4.5 Mt/year.22

Sugar beet pulp, the solid remaining after sugar extraction,
contains 10−15 wt % protein, 20−25 wt % cellulose, and 25−
36 wt % hemicellulose. The high carbon content and pectin
content (20−25 wt %) of sugar beet pulp make pulp a
promising carbon source for production of biobased fuels and
chemicals.103,104

Guayule (Parthenium argentatum A. Gray) is a woody shrub
native to the southwestern U.S. and northern Mexico.105

Guayule is a source of high-quality and hypoallergenic natural
rubber (cis-1,4-polyisoprene).106 Large amounts of two
residues are produced during shrub processing: a liquid
mixture of resin/low-molecular-weight rubber and a lignocel-
lulosic bagasse.105 Because of the low rubber yield from
guayule (5−7 wt %), the value-added use of the resin and
bagasse coproducts is important for the economic feasibility of
guayule rubber; selling prices of $1.00/kg and $0.10/kg for
resin and bagasse, respectively, would make guayule rubber
more competitive with Hevea rubber.107 Guayule bagasse
constitutes approximately 70−80 wt % of the shrub biomass.71

It is estimated that 4 Mt of lignocellulosic bagasse can be
generated from 400 000 ha of guayule.72 Guayule bagasse is
mainly composed of cellulose, hemicellulose, lignin, residual
resin, and various plant proteins and lipids; the composition
varies substantially with extraction and pretreatment methods,
cultivation site, harvest date, shrub strain, shrub age, and
storage conditions.71,108 Analysis of resin-free bagasse
estimated the protein content at 22−24 wt %71 with an
attractive higher heating value of 18−24 MJ.7071 Amino acids
constitute around 18% of leaf and wood residues after resin
and rubber removal.109 Besides bioenergy applications,110−112

other proposed applications for guayule bagasse include soil
amendments,113 termite-resistant composite boards,114,115

paper,116 and adsorbents for removal of contaminants from
aqueous solutions.117

3.2. Deoiled Seedcakes As Feedstock. The product of
oilseed crops after oil removal through extrusion or extraction
is categorized as edible and nonedible seedcakes. According to
the Food Safety and Standards Authority, 5−20% free fatty
acid is considered edible oil, and anything outside of this range
is considered nonedible oil.118 Among the plants from which
edible oil seedcakes are derived are soybean, coconut,
sunflower, sesame, mustard, palm kernel, groundnut, cotton-
seed, canola, olive, Babassu palm, and rapeseed. These
seedcakes have high nutritional value, with protein content
ranging from 15 to 50 wt %, and are mainly used as animal
feeds.119 Nonedible oil seedcakes, such as Jatropha (Jatropha
curcas), Karanji (Milletia pinnata, formerly Pongamia pinnata),
neem (Azadirachta indica), castor (Ricinus communis), mahua
(Madhuca longifolia or M. indica), cannot be used as animal
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feed due to their toxicity from the presence of certain
secondary plant metabolites. These secondary metabolites are
produced by the plant for protection, sometimes acting as
antioxidants and enabling the plants to grow in harsh
environments. Table 2 summarizes the feedstock properties
of nonedible deoiled seedcakes. Nonedible deoiled seedcakes
with high nutrient components may be used as a source of
plant nutrients (fertilizers), pesticides,119 and biofuel produc-
tion.120−122 The utilization of the seedcakes after extraction of
oil can substantially impact biodiesel production costs.123 With
their high initial calorific values, the seedcake is considered an
ideal thermochemical conversion feedstock.
Jatropha curcas is considered one of the more ideal species

for energy oilseed production on nonaerable lands. Unlike
many other tropical plants, Jatropha is drought resistant and
may grow at extreme conditions. Jatropha seed kernels contain
31−35% crude protein and 55−58% lipid;139 1−1.5 Mg of oil
can be produced per hectare.140 One kg of biodiesel can be
produced from 4 kg of Jatropha seeds.141 Pandey et al.
predicted in the coming years that India will grow 20 million
ha of Jatropha and produce about 20 Mt of seedcake, creating
potential for value-added products.142 The variations in protein
content of Jatropha seedcakes are large and depend on the
method of oil recovery. Achten et al. estimated an average of
58% protein on a dry matter basis.143 Jatropha contains
phorbol ester (phorbol-12-myristate-13-acetate), which is toxic
to humans and animals. The toxicity of phorbol ester ranges
from skin irritation to the production of tumors.144 In addition
to phorbol ester, Jatropha contains several antinutritional
factors such as trypsin inhibitors, phytic acid, lectin, and
saponin that raise safety questions for Jatropha around edible
crops.145 Jatropha leaves have been used as a fumigant for bed
bugs, feed for silkworms, and clothing dyes; Jatropha latex and
twigs have been used in medicine and its fruits in bioethanol
production.146,147 Some studies suggested the use of Jatropha
seedcakes as a fertilizer, biopesticide/insecticide, and mollusci-
cide because of the high levels of N-containing compounds,
although a number of questions concerning the long-term and
cumulative impacts of Jatropha seedcake on soils have not
been addressed. Makkar et al.148 suggested that the detoxified
seedcakes can be used as a protein supplement for animal feed
and aquaculture, albeit at higher feed prices due to the

detoxification process. The high lignin content (45−47%) of
Jatropha seed husks and shells, and their associated low
digestibility and degradability, make them less suitable for
biogas production.148 Jatropha seedcake, on the other hand,
contains 27% lignin and gave 60% higher biogas yield
compared to cattle dung as a feedstock.149,150 Blended
Jatropha shell and seedcake biochar can be pelletized for
pellet combustion fuel.151−153 Some studies have also reported
the conversion of Jatropha seedcake by hydrothermal
liquefaction (HTL) or fermentation.154,155

Karanji (Milletia pinnata), a nonedible oilseed that can grow
on marginal lands, has received significant attention as a
legume plant because of its potential in biodiesel production
and soil N fixation. A single tree can provide 9−90 kg of seeds,
for a yield potential of 900−9000 kg seed/ha containing 25%
oil. The remaining 75% seedcake has a low bulk density (0.3−
0.35 g/cm3). Karanji leaves have some applications as insect
repellents in grain storage156 and as a valuable animal lactation-
promoting fodder.157 Karanji seedcakes have high carbohy-
drate (42−56%), protein, and lignin contents.158 The low ash
content (2−4 wt %), and an absence of sulfur compounds, in
Karanji seedcake make it a good candidate for biofuel
production.158 The presence of toxic flavonoids, such as
karanjin, pongamol, phytates, tannins, protease inhibitors,
glabrin, other polyphenolic compounds,159 and a bitter taste,
make Karanji seedcakes inedible for animals.160 A potential
biorefinery scheme for Karanji would be (i) conversion of the
seed oil to biodiesel; (ii) conversion of the deoiled seed residue
to bioethanol; and (iii) conversion of the bioethanol solid
residues to biochar and bio-oil.156 Sangeetha et al. suggested
that Karanji seedcake could be a promising substrate for
bacterial growth and enzyme production.161

Neem (Azadirachta indica) seeds grow on trees in tropical
and semitropical regions and contain up to 40−50 wt % oil,
with a potential to produce 350 Mt/year of oil.162 Processing
results in 50−60 wt % of the total seed weight as seedcake,
along with glycerol. Deoiled neem seedcake is rich in protein
(35%),119 carbohydrates, minerals, and nitrogenous compo-
nents, namely, azadirachtin.162 As a biopesticide, deoiled neem
cake improves nutrient availability, regulates weed growth, and
controls nematodes.163 The presence of azadirachtin, tetranor-
triterpenoid (an antifeedant), isoprenoids, and nimbidin

Table 2. Biochemical Composition, N Content, and Higher Heating Value (HHV) of Different Deoiled Seedcakes

feedstock protein (wt %) cellulose (wt %) hemicellulose (wt %) lignin (wt %) N (wt %) HHV (MJ/kg) ref

Jatropha curcas 50−60.0 59.4 18.2 22.3 10.6 13.5 Parekh et al.124

Karanji 17.0−21.0 56.1 17.5 26.4 5.5 17.0 Fu et al.125

neem 45.0 29.0 26.0 7.4 21.8 Mulimani & Navindgi126

rapeseed 16−24 27.7 36.6 4.9 6.9 19.8 Egües et al.127

Ucar & Ozkan128

castor 31.0−35.4 9.6 26.6 21.9 8.5 21.5−23.4 Ferreira et al.129

Castro et al.130

Mahua 16.0−30.0 60.4 16.2 20.2 3.3 21.0 Singh et al.131

Volli et al.120

Pennycress 19.6−25.8 6.9 17−22 Selling et al.132

mustard 28.1−38.8 5.66 20.5 Volli et al.120

Sarker et al.133

apricot kernel 23−31.4 44.2 24.7 24.6 6.1 22.8 Fadhil134

Wadhwa & Bakshi135

black cumin 23.9 37.1 10.4 26.7 5.3 22.4 Sen & Kar136

Thilakarathne et al.137

Camelina 36.3 6.2 22.8 Mullen et al.138
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preclude the use of neem cake as animal feed.164,165 In studies
of biofuel production from neem seedcakes, Dhanavath et
al.166 obtained 52.1 wt % bio-oil using pyrolysis. This yield was
in good agreement with Volli et al.120 for production of bio-oil
from the deoiled neem cake by thermal pyrolysis.
Castor (Ricinus communis), a tropical plant that can be

cultivated in tropical, subtropical, and temperate regions, is
widely used in the manufacture of biodiesel, cosmetics,
pharmaceuticals, and lubricants. The major castor-producing
countries are India, China, Brazil, Russia, and Thailand, while
the major importing countries are the U.S., Russia, and Japan.
Apart from oil and biodiesel from the castor bean, 1.13 Mt/
year of castor seedcake is produced globally.167 India produces
approximately 0.4 Mt of total castor seedcake.168 The
composition of castor seedcake varies with the method of oil
extraction, storage conditions, and quality of the oilseeds.
Castor seedcake is fairly protein-rich at 290−390 g/kg or
19.4−49.7% crude protein across several studies. Annongu et
al. showed that both the decorticated and undecorticated
forms of castor seedcake have high protein contents, 35.4 and
21.9%, respectively, while decorticated seedcake has a higher
nutrition value.169 The phytotoxin in castor is ricin, a water-
soluble, heat-labile protein that is concentrated in the seeds.3

The presence of ricin, ricinin (a toxic alkaloid), agglutinin, and
allergen CB-1A makes the toxicity of the seedcake too high to
be used as an animal feed.170 Castro et al. showed that deoiled
castor seedcake offers the potential for the production of
multiple enzymes with applications in biofuels, such as
amylases, cellulases, and xylanases.130 Another study reported
the use of castor seedcake for production of fertilizer and
biodegradable materials by extraction of the proteins, which
may represent an additional valued-added opportunity for
castor in biorefinery concepts.171

Mahua (Madhuca indica), a tropical tree native to central
and northern India, has an unusually high oil content (50−
61%) with great potential for biodiesel production. Between
1983 and 1984, 55.5 kt of Mahua seed were produced in India,
with every 4 kg of mahua seed producing 1 L of biodiesel and
3.5 kg of deoiled seedcake.100 The Mahua deoiled seedcake
constitutes 60% of the total biomass and contains 30% protein.
Mahua seedcake is used in low-value applications: fertilizer,
manure,172 insecticide/pesticide,173 hair wash,131 and dye
removal from wastewater.174 Mahua seedcake is not edible
without detoxification because of the presence of saponin
compounds, which give a bitter taste and cause damage to the
liver and kidneys. One exception is with use as fish feed;
Alexander et al. did not identify any toxicity in fishes.175 In
recent years, Mahua seedcake has been used as a feedstock for
pyrolysis and anaerobic digestion.120,176−180 Gupta et al.179

reported that detoxified Mahua seedcake showed significantly
better results compared to the raw cake in biogas production,
although utilization of raw cake for biogas was still a reasonably
effective application.
Pennycress (Thlaspi arvense L.), also known as stinkweed or

French weed, is a member of the Brassicaceae family, which is
native to Eurasia and grows extensively in temperate North
America. With high cold tolerance, a short lifecycle, high
productivity (up to 840 L/ha oil and 1470 kg/ha press-
cake),181 high seed oil content (up to 38%), a tolerance for
fallow lands and minimal agricultural inputs, and compatibility
with existing agricultural infrastructure, pennycress is a good
candidate for biodiesel production and extraction of value-
added products.2,182 The high protein (22−32%) and
carbohydrate contents in pennycress cake make the cake a
good candidate for biofuel production, while the presence of
glucosnolate and allylthiocyanates (a toxic compound) limit its
utility for human food or animal feed.181 Uses of pennycress

Table 3. Biochemical Composition, N Content, and Higher Heating Value (HHV) of Other Bioenergy Waste Feedstocks
Including Dried Distiller’s Grains with Solubles (DDGS) and Digestates from Biogas Production

feedstock

crude
protein
(wt %)

crude fat
(wt %)

ash
(wt %) N (wt %)

HHV (MJ/
kg) other (wt %) ref

maize DDGS 28.7−32.9 8.8−12.4 3.9−9.8 5.3−8.1 18.8−21.7 crude fiber: 5.4−10.4 Bhadra et al.197

Morey et al.198

sorghum DDGS 31.0 7.7 3.6 16.1 crude fiber: 9.8 Sotak et al.199

wheat DDGS 19.6−38.2 3.6−3.8 4.8−8.4 5.9 17.6 crude fiber: 6.8−8.0 Rasco et al.200

Eriksson et al.201

cassava DDGS 5.6−14 0.2 11.7 14.3 crude fiber: 4.0−26.7 Taranu et al.202

Sotak et al.199

oat DDGS 16.0 6.3 crude fiber: 5.7 Moreau et al.192

barely DDGS 17.7 2.5 5.7 0.5 21.3 acid detergen fiber: 30.3−31.8 Wu et al.203

rice DDGS 6.5−7.9 0.5−2.9 0.5 crude fiber: 2.8−3.5 Choi et al.204

triticale DDGs 33.2−34.5 4.5−4.7 4.4 fiber: 26.8−27.0 Chrenkova ́ et al.205

dairy manure digestate 27.4 3.5 13.3 cellulose: 23.5; hemicellulose:
17.5; lignin: 18.3

Posmanik et al.206

Guilayn et al.207

swine manure digestate 16.3 7.8 9.7 1.4 cellulose: 59.3; hemicellulose:
14.7; lignin: 6.5

Vuppaladadiyam
et al.208

food waste digestate 25.6 5.8 cellulose: 32.3; hemicellulose:
33.5; lignin: 13.4

Opatokun et al.209

wastewater treatment sludge digestate 35.9 5.3 15.2 Wang et al.210

digestate from mixed waste (60% barley silage,
herbaceous silage, and poultry manure)

25.0−30.0 9.3 1.1 19.2 cellulose: 36.1−43.1;
hemicellulose: 13.9−26.3;
lignin: 21−27.9

Menardo et al.211

digestate from mixed waste (9% groats, 29% olive
oil cake, 57% triticale silage, and 5% chicken
manure)

8.7 1.6 cellulose: 22.7; hemicellulose:
19.4; lignin: 35.3

Sambusiti et al.212
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cake as a soil biofumigant or filler/reinforcement material for
plastic and lignocellulosic composites have been consid-
ered.183−185 Some studies have investigated pennycress press-
cake as a feedstock for pyrolysis and hydrotreating.2,186−188

Pyrolysis oils derived from pennycress seed cake tend to be less
acidic, more stable, and have higher energy content than those
from most other types of lignocellulosic biomass due to their
higher N content.
3.3. Other Bioenergy Residues As Feedstock. Distiller’s

dried grains with solubles (DDGS) are a residue from corn-
and wheat-based bioethanol fermentation. In 2012, the U.S.
ethanol industry produced 31.6 Mt DDGS from 114 Mt of
corn, indicating that the economics of bioethanol production
could be heavily influenced by the utilization of the DDGS.189

The unfermented components consist of fiber, protein, lipids,
minerals, and vitamins. The protein content is approximately
3-fold that of the corn kernels; however, DDGS is an
incomplete animal feed based on amino acid analysis.190,191

Corn and wheat are the predominant feedstocks for ethanol
and DDGS, although a few other high-starch grains have been
reported.192 Table 3 shows the composition of different DDGS
sources. The protein content of DDGS varies between 20 and
57%,193 and accounts for 21−36% of the grain’s total N.
Protein contents for hard wheat fermentation products,
including 29% for distillers’ grains and 57% for centrifuged
solids,194 were higher than the corresponding fractions from
corn.195 Sorghum and wheat DDGS have a higher crude
protein, higher ash content, lower energy content, and lower
crude fat compared to corn DDGS (Table 3). Sludge obtained
from cassava bioethanol production contained ∼35% protein
by mass.196

The most common use of DDGS is for animal feed;
however, there have concerns expressed regarding this
application.213 Heat-damaged DDGS (often identified by a
darker color) has a poorer nutritional value and should not be
fed to nonruminants.214 Elevated phosphorus content in
DDGS is excreted as manure that leads to some disposal
problems. Animal consumption of DDGS can be hindered by
difficult digestion due to the high fiber content, inconsistency
of DDGS mineral content, and thiamine deficiency due to high
sulfur.215 Other potential uses of DDGS are fillers in
biocomposites and bioplastics,216 food additives from extrac-
tion of oil from DDGS,217 fertilizers for plant growth,218 and
biofuel generation using thermochemical219−222 and biochem-
ical conversion methods.35 Wet distillers’ grains with solubles
(WDGS) form directly as a byproduct of corn-based
bioethanol fermentation and may be the better choice for
HTL because HTL does not require drying, and an HTL
reactor could be placed downstream at a bioethanol plant to
mitigate problems from the short shelf life (4−7 days) and
high transportation costs of WDGS. Toor et al.223 obtained
34% (dry feedstock basis) biocrude oil from catalytic HTL of
WDGS. The high oil content of corn-based DDGS makes it a
potential feedstock for biodiesel production, calculated at up to
1.1 billion L/year.224 Deoiled DDGS could then also be used
as animal feed.
Digestate is a byproduct of anaerobic digestion, representing

the chemical composition of the feedstock after extraction of
biogas. Digestates generally contain more cellulose, lignin, and
nitrogenous compounds due to a slower consumption rate of
these compounds by the anaerobic microorganisms compared
to hemicellulose.225 More information about the composition
of different digestates is provided in Table 3. A biogas plant

with a capacity of 500 kW, based on 10% dry matter feedstock,
produces more than 10 kt/year of digestate.226 In 2013, the
European Union reported that 80 Mt/year of digestate were
produced from 13 000 biogas plants and needed management
or disposal.227 The composition and quality of anaerobic
digestates depend on the feedstock, operating conditions, and
digester configuration. For example, digestate derived from
yard waste contains more celluloses and hemicelluloses, while
manure and sludge have more N-containing compounds. The
moisture content of the digestate is influenced by the choice
between a wet or dry anaerobic digestion process.228 Logan et
al. presented management strategies for digestates from
municipal solid waste to address concerns about potential
pollution, conservation of vulnerable zones, prevention of
communicable diseases, and storage and application op-
tions.228 Some solid digestates with a high N content (51−
68%) can be used as a fertilizer to reduce costs, nitrate
pollution, and soil carbon losses.229−231 Solid digestates with
lowerN contents (24−36%) are suggested for soil amend-
ments.232 Nkoa provides an extensive review of the benefits
and effects of using digestates for fertilizer.233 The high levels
of water-soluble polyphenols/phenolic compounds in some
liquid digestates may induce N immobilization in soil and
inhibit seed germination.232 Municipal solid waste digestates
can contain plastic, timber, fibers (natural and synthesized
textiles), grit or sand, metal fragments, and solid fruit residues
that require special treatment before use as a fertilizer since
toxic compounds, heavy metals, and undigested inorganic
materials could be transported through the food chain and
drainage water.228 Digestate can have both phytostimulating
and phytotoxic effects on plants.234,235 Digestates can have
higher NH3 emission potential than undigested animal
manures and slurries due to instability of the ammonium
nitrogen (NH4-N) at pH levels above neutral (7.5−8.5).236
In terms of bioenergy applications, Kratzeisen et al.226

investigated digestate pellets as a solid fuel for combustion.
Although the net calorific value of digestate pellets (15 MJ/kg)
was comparable to the calorific value of wood, its high ash
content, low ash melting point, slagging, and need for drying
and dewatering steps made digestates disfavored for direct
combustion and incineration.237 Pyrolysis of digestates derived
from different feedstocks has been studied by Opatokun et
al.,209 Neumann et al.,238 Monlau et al.,239 Hung et al.,240

Bedoic ́ et al.,241 and Wei et al.242 Recently, hydrothermal
processes (carbonization, liquefaction, and gasification) have
gained attention as a resource recovery option for digestates
due to the high moisture content of the digestates and the wide
range of compounds that can be converted thermochemi-
cally.243−245

3.4. Food Wastes As Feedstock. Food waste is one of the
most abundant protein-rich wastes, accounting for ∼22% of
landfill waste in the U.S.246 Food waste can include residuals
from large-scale commercial food processing (vinegar
production residues, coffee and meat processing byproducts,
etc.),247,248 small-scale kitchen wastes, and uneaten prepared
foods. According to the U.S. Environmental Protection
Agency, 63.1 Mt of food was wasted in the U.S. in 2018,
approximately 22.4 Mt more than what was wasted in 2017.249

Food wastes contain substantial quantities of proteins, lipids,
starch, micronutrients, bioactive compounds, and dietary
fibers, making them a high priority for reuse as feeds,39

biomaterials,250,251 value-added compounds,252 and bio-
fuels.253 Table 4 summarizes the composition of different
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food waste streams. To be considered a viable source of
protein (often the most expensive/critical component of a
feed), food waste must have high protein content on a mass
basis, have a well-balanced essential amino acid composition,
and have had any toxic or allergic substances removed.39

Prandi et al.254 characterized the N fraction of 39 food waste
streams to assess their potential for valorization. In addition to
familiar protein-rich food wastes (dairy, egg, and cereal
wastes), they identified leek leaves, parsley wastes, and
mushroom wastes as good candidates for feed proteins.
Orange peels, Belgian endive leaves, and berry waste were
protein-rich but had limited nutritional value. The high
amounts of phytotoxic and/or antinutrient compounds (e.g.,
caffeine, tannins, and polyphenols) in coffee byproducts (spent
coffee, husks, and pulp) have limited their direct use for soil
and feed applications even though the byproducts contain high
levels of protein (13.6%) and nonprotein nitrogenous
compounds (3.7%).255 Among nonfeed applications, such
food wastes can be used for soil improvers, biopolymers,
biofuels, and biocomposites.256

4. CHALLENGES OF NITROGEN IN BIOFUEL
INTERMEDIATES

Concerns about closing the N cycle, in addition to closing the
carbon cycle, have prompted some to argue for the specific use
of proteins (over carbohydrates) in biofuel production with the
goal of coproducing and recycling NH3 for plant nutrition.

269

There has also been much attention paid to N-based fuels,
such as NH3 and urea, which bypass the hydrocarbon
generation process completely.270 The same two issues that
must be managed for N-based fuel utilization, namely, the
toxicity of certain N-compounds in (by)products and the
potential for nitrogen oxide (NOx) emissions during
combustion,271 dictate the removal of N from carbon-based
fuels, whether these fuels are fossil- or biomass-derived. For
crude oils, a N content greater than 0.25 wt % is indicative of
the need for further refining. In general, 25−55% of the N in
biomass distributes into the bio-oil phase during pyrolysis,
resulting in a 2−8 wt % N content; 20−40 wt % of the N in

biomass is recovered in the HTL biocrude oil, resulting in a 3−
6 wt % content.36,37 Amines, amides, nitriles, and N-
heterocycles (pyridines, pyrroles, piperazines) are the main
nitrogenous compounds in HTL biocrude oils and pyrolysis
bio-oils because of Maillard reactions between amines and
carbohydrates.272 N is particularly difficult to remove from the
heterocyclic compounds such as pyrazines, pyrroles, quino-
lines, and pyridines.273

Numerous reviews have been written on denitrogenation of
biomass-derived fuel intermediates, with or without catalysts,
and with or without the use of hydrogen gas, adsorption,
supercritical fluids, or hydrogen-donor solvents.274,275 Often, N
is eliminated as NH3 gas, which has the potential to be
recycled as a fertilizer.276 Catalytic hydro-denitrogenation is
one of the most efficient approaches to removing heteroatoms
from HTL/pyrolysis oils; the H and C atoms that had been
associated with the N atoms remain in the upgraded oil. For
separation processes like adsorption and solvent extraction,
whole N-containing compounds are removed, leading to easier
processes but higher C and H mass losses.277 The viability of
any given N removal process depends on the quantity and
identity of the N-containing compounds to be removed. Cheng
et al.38 reviewed catalytic denitrogenation of pyrolysis bio-oil
from high-protein biomass, including thermochemical and
physicochemical denitrogenation methods. Leng et al.37 did
not recommend adding catalyst during pyrolysis or catalytic
denitrogenation of pyrolysis bio-oil because of the low activity,
low selectivity, coking, and leaching problems and instead
suggested the use of minerals already present in the high-ash,
protein-rich biomass and the use of NH3 as the reaction
atmosphere. In a review of catalytic hydrotreating and
adsorptive denitrogenation methods, Li et al.278 reported that
adsorptive denitrogenation is promising for removal of N from
microalgae bio-oil. More recently, bio-oil upgrading by means
of supercritical fluids has been explored.279,280 Alternatively,
biofuel intermediate fractions high in N-containing com-
pounds, such as pyradines, quinolines, and indoles, may have
potential for chemical, pharmaceutical, and polymer produc-
tion.281

Table 4. Biochemical Composition, N Content, and Higher Heating Value (HHV) of Different Food Wastes

feedstock
protein
(wt %)

carbohydrate
(wt %)

lipid
(wt %)

cellulose
(wt %)

hemicellulose
(wt %)

lignin
(wt %) N (wt %)

HHV (MJ/
kg) ref.

spent coffee
grounds

18.0 67.6 2.0 13.0 42.1 25.0 15.5−16.7 21.8 Karmee et al.256

Marx et al.257

mango seed
kernels

6.3 32.2 13.3 55.0 20.6 23.8 0.2 15.9 Nzikou et al.258

Ganeshan et al.259

Henrique et al.260

mango peels 2.1 26.5 9.1 14.5 4.2 16.3 Imran et al.261

Orozco et al.262

banana peels 10.1 68.5 5.0 12.1 10.1 2.8 1.3 18.8 Pathak et al.263

tomato pomace 19.3 25.7 5.9 29.1 13.5 57.4 2.8 25.1 Chiou et al.264

watermelon rinds 13.5 48.5 4.5 20.0 23.0 10.0 0.8 12.7−19.2 Jawad et al.265

Ebikade et al.266

olive pomace 6.7 49.0 10.9 37.4 33.9 28.6 1.4 22.3 Chiou et al.264

orange peels 9.1 80.7 4.1 11.9 14.4 2.1 Orozco et al.262

potato peels 18.5 73.5 0.5 44.2 2.7 22.4 3.0 16.6 Martinez-Fernandez
et al.267

municipal food
waste

21.4 25.8 20.5 24.7 1.8 3.4 20.9 Bayat et al.253

cauliflower leaves 21.8 40.0 50.0 3.0 4.0 10.8 Stella Mary et al.268
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5. UPSTREAM NITROGEN RECOVERY FROM
BIOMASS

Rather than removing N from fuel intermediates after
conversion, recovery of protein (and other N-containing
compounds) before conversion may be more advantageous
for process efficiency and for the number of products from a
biorefinery. Removal of N generally occurs in three
(sequential) processes: (1) cell disruption and isolation to
extract proteins, (2) protein purification/recovery, and (3)
protein hydrolysis to amino acids.282

Several protein extraction methodologies and conditions
have been reported for integrated biorefineries.11,283 Chemical
methods include alkaline extraction,284,285 aqueous ammonia
(AFEX) extraction,286,287 buffer extraction,288 organic solvent
extraction,289 and combinations of these methods.290,291

Alkaline extraction is commonly used for extracting proteins
from agriculture residues, deoiled seedcakes, and DDGS with
protein recoveries of 82−91.1%, 15−36%, and 60−79%,
respectively.292−294 The efficacy of protein extraction using
chemical methods depends on the nature of the biomass, solid-
to-solvent ratio, temperature, pH, and process time.295 A

recent review by Kumar et al. summarized the effects of the
sample-to-solvent ratio, alkali concentration, time, and temper-
ature for several protein extractions from plant.296 A pH of 8−
14, temperature of 30−95 °C, time of 30 min to 4 h, and
NaOH/KOH as alkali for pH adjustment were identified as
conditions to achieve maximum protein yields.283,297,298 The
chemical extraction of proteins, in particular, organic solvent
extraction, is suitable for biomass containing aromatic amino
acids and proteins with nonpolar/polar side chains and lipid-
binding ability.296

Physical methods of protein extraction include ultrasound-
assisted, microwave-assisted,299 hydrothermal,300,301 super-
critical fluid,302 mechanical fractionation, and ultrafine milling
with electrostatic separation as the most conventional method
for lignocellulosic materials.303 Contreras et al. reviewed
physical protein extraction methods from agricultural and
food residues based on dry and nondry extraction conditions
and use of different protein extraction/recovery methods.283

Ultrasound-assisted extraction is widely reported for extraction
of proteins from soybean wastes, sunflower meal and deoiled
seedcakes, and defatted rice bran.304,305 Up to 88% protein

Table 5. Common Techniques for Extraction of Protein from Plant-Based Feedstocks

extraction method
protein content/
recovery (wt %) advantage(s) disadvantage(s) refs

Chemical treatment
alkaline extraction 15−95 - Simple process - Hazardous waste production Gao et al.312

- No sophisticated equipment - Low selectivity Hou et al.311

- Easy scale-up
organic solvent
extraction

23−63 - Relatively inexpensive - Low selectivity Watanabe et al.313

- Low protein recovery
- Hazardous waste production Capellini et al.314

- Undesirable byproduct production
- High extraction temperature

Physical treatment
ultrasound-assisted 15−87 - High extraction yield - Longer processing times Kumar et al.296

- High purity - Denaturation and aggregation of protein at
higher intensities

Bedin et al.307

- Lower energy requirements
Gencḑağ et al.298

- Lower solvent consumption
microwave-assisted 28−70 - Shorter processing times - Energy-intensive technique Varghese and Pare315

- Minimal target compound degradation
- No additional filtration - High extraction temperature Görgüc ̧ et al.316

pulsed electric field-
assisted

1.8−50 - Nonthermal extraction (extraction at
room temperature)

- Low extraction yield Sarkis et al.317

- Very short processing times (<1 s) - Low level of technology readiness Parniakov et al.318

- Extraction of pure compounds
high-pressure fluid-
assisted

30−65 - Low solvent consumption - High energy demand Di Domenico Ziero
et al.308

- High selectivity - Expensive
- High yield and purity

Biochemical
treatment

enzyme-assisted
extraction

43−96 - Moderate extraction temperatures - High enzyme cost Gencḑağ et al.298

- High protein solubility - Long extraction times Nadar et al.309

- Suitable for large-scale production - Inconsistent yield
- Use of nonexplosive solvents - Enzyme sensitivity to process conditions
- No hazardous waste
- High extraction yield
- Compatible with different procedures
- Proteins suitable for human consumption
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recovery has been reported for fruit seeds and plant leaves
using ultrasound-assisted extraction, depending on the type of
ultrasonic reactor (bath or probe), sonication frequency, and
power.306 Bedin et al. compared ultrasound-assisted and
microwave-assisted extraction methods for alkaline protein
extraction from rice residues; ultrasound-assisted showed the
highest yield (12.1%) and protein content (75%).307 Ultra-
sound-assisted extraction, with either chemical extraction or
novel methods, is the most recommended combined method
to improve the protein yields.296 Di Domenico Ziero et al.
reviewed protein extraction under subcritical and supercritical
water as an efficient and environmentally friendly method.308

Biochemical methods of protein extraction, using single or
multiple enzymes, have recently gained attention. Because of
the rigid cell walls and high lignin contents in agriculture and
processing wastes, cell disruption is one of the main challenges
for protein extraction. Enzyme-assisted extraction can further
increase protein yields.290 Carbohydrolases, proteases, and
pectinase have been used to release proteins from lignocellu-
lose biomass, often with superior quality, lower viscosity, better
thermal stability, and higher solubility compared to extraction
without enzymes.298 Protein yields, enzymes used, and
optimized extraction parameters were reviewed by Contreras
et al.283 and Nadar et al.309 A combination of enzyme-assisted
extraction with physical extraction often increases extraction
efficiency (and economic viability) depending on cell wall
rigidity, chemical composition, protein structure, and storage
conditions.21 Enzyme-assisted processes can be performed
under mild conditions (pH of 6−8 and temperatures of 40−60
°C) without the presence of toxic chemicals and to the desired
degree of hydrolysis.300

Table 5 summarizes protein extraction techniques with their
protein yields and recoveries, and advantages and disadvan-
tages. Alkaline treatment is the most common and affordable

approach to extract proteins from agricultural and food
residues.310 Alkaline extraction at high pH (generally pH >
9) can result in 90% recovery of the original proteins.
Chemical extraction methods, however, are time-consuming,
energy-consuming, and less economical. The destruction of
amino acids, like lysine and cysteine, and the formation of
cross-linked amino acids lead to lower overall quality, meaning
that alkaline treatment is not widely used in food
production.311 Extraction of proteins with organic solvents
showed low protein recovery and quality compared to alkaline
extraction. Enzyme-assisted extraction and ultrasonic-assisted
extraction are effective for thermally sensitive proteins since
they do not require high temperatures like microwave-assisted
methods. Physical extraction methods have shorter processing
times and lower unit costs compared to conventional
enzymatic extraction. Ultrasound-assisted extraction before
enzymatic extraction is one of the most preferred and feasible
methods for a large-scale biorefinery.298

Protein purification after extraction usually depends on the
physical and chemical properties of the target proteins. Acid
precipitation,319 isoelectric precipitation coupled with electro-
lyzed water treatment,313 membrane separation,320 hydro-
phobic interaction chromatography,321 and electrophoresis322

are the most common methods to separate and purify proteins
from agricultural and processing wastes. A large amount of
nonproteinaceous compounds are also present in the protein
precipitate.323 Extraction of proteins from oilseed cakes has
been done using hydrothermal and enzyme-assisted processes,
followed by ultrafiltration and isoelectric precipitation, electro-
lyzed water treatment, alkaline precipitation, or acidic
precipitation.41,284,324 Extraction of proteins from DDGS and
food wastes has been reported using alkaline,292 hydro-
thermal,301 and enzyme-assisted extraction, or coupling

Figure 1. Example mass flow diagrams for low-cost lignocellulosic feedstock coupling protein extraction and conversion to produce a suite of target
biorefinery materials. Letters A−H represent pathways described in literature studies.
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AFEX pretreatment and enzymatic extraction followed by acid
precipitation.34

After purification, proteins are frequently hydrolyzed into
free amino acids and oligopeptides using acidic, alkaline,
subcritical water, or enzymatic-assisted methods. The acidic
and alkaline approaches have some drawbacks, such as the risk
of solvent leakage, difficulty in reactor design, degradation of
some amino acids, and the formation of salt wastes.325

Subcritical (and supercritical) water hydrolysis is considered
a green process for simultaneous extraction and hydrolysis of
protein but requires high energy inputs and infrastructure
investment.308 Enzyme-assisted approaches are less energy-
intensive and more environmentally friendly than other
techniques and can be used alone or in combination with
other methods.326 Glutamic acid is the most abundant
nonessential amino acid derived from the hydrolysis of plants
and a top candidate for production of bulk biobased chemicals
such as N-methylpyrrolidone, N-vinylpyrrolidone, and acryl-
onitrile.327 Amino acids derived from high-protein waste
streams can be used directly as precursors to some value-
added chemicals using decarboxylation and deamination to
form nitrogenous compounds such as amines, (cyclic) amides,
or nitriles. Further details of these methods are available in the
study by De Schouwer et al.21

6. CONVERSION PATHWAYS FOR LOW-COST,
N-CONTAINING BIOMASS

Several studies have reported on protein extraction in
biorefinery schemes. Figure 1 shows example pathways for
the various fractions of biomass from starting materials to final
products. Kehili et al. reported on protein extraction during
recovery of carotenoids from tomato peels and seeds;
supercritical CO2 was used to recover carotenoids, followed
by alkaline protein extraction before hydrolysis of the cellulose

and hemicellulose to produce bioethanol; 90% of the initial β-
carotene content and 30% of the initial protein content were
recovered.328 Bals et al. recovered proteins from switchgrass
using aqueous NH3 and then hydrolyzed the remaining sugars
to produce bioethanol; they reported a protein recovery of
87% and a sugar recovery of 74%.286 Chiesa et al. considered
three routes for protein extraction from dry biomass during
production of cellulosic ethanol: before feedstock pretreat-
ment, after feedstock pretreatment, and after saccharification.
They reported that protein extraction from fresh leafy biomass
has higher yield and quality compared to extraction from dry
biomass.28 Sanders et al. extracted amino acids from potato
starch processing waste to be used for fermentative production
of acrylonitrile and urea.329 Dang et al. studied recovery of
collagen protein powder from chromium leather scrap waste;
the extract contained different amino acids and low
concentrations of mineral salts that can be used as a
biofertilizer.330 Since the extraction denatures the collagen
fibers and enables degradation by anaerobic microorganism,
collagen protein extraction pretreatment can be used for biogas
production from leather waste.331

The extraction of proteins prior to thermochemical
processing (pyrolysis, HTL, and hydrothermal carbonization
(HTC)) has been investigated.332−334 Massaya et al. described
a multiple-product process for spent coffee grounds. A series of
hydrothermal processes were used to obtain an antioxidant
aqueous extract containing chlorogenic acids, polyphenolics,
and polysaccharides. Proteins (21.8−32.8 wt %) were then
recovered from the residual cake using alkaline extraction and
acid precipitation. The final solid residuals were converted to
hydrochar using HTC.334 HTC-char after N recovery had a
higher HHV content (32−37 MJ/kg vs 29−36 MJ/kg) and a
higher burnout temperature (518 °C vs 452 °C). Arauzo et al.
described a biorefinery approach for brewer’s spent grains in

Figure 2. Prices of enzymes and amino acids derived from organic wastes as compared with the approximate prices of NH3 and biofuels (red slash-
line ribbon) on a per ton basis.338,345,346
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which proteins were first extracted using alkaline pretreatment
and acid precipitation, followed by HTC. Extraction of the
protein allowed for a higher C/N ratio and lower ash content
in the hydrochar.335 Integrated protein extraction with
pyrolysis has been explored for microalgae and sewage sludge
with promising results,48,300,336,337 but little is available on the
pretreatment of lignocellulosic biomass to remove protein
before pyrolysis.

7. CHALLENGES AND PERSPECTIVES

To date, few fuel upgrading catalysts have been shown to be
effective at denitrogenation of biocrude oil, as most of the N is
contained in aromatic compounds (e.g., pyridine derivatives),
the condensed structures of which are extremely stable and
require a large amount of energy to break down. Even if N can
be completely removed from biocrude oil, the energy
consumption for the formation of the N-free biofuel and the
NH3 are unlikely to be compensated by market benefits: 500−
700 USD/t for the biofuel and 300−900 USD/t NH3 (which
fluctuate dramatically due to the unstable supply and
demand).338 To minimize the energy input into the
biorefinery, more attention should be paid to development of
milder and more efficient techniques for removal of N-
containing compounds before severe processing conditions can
form stable N-containing condensed products in the biomass.
The global markets for amino acids, and in particular, glutamic
acid, are expected to reach 43.55 and 22.55 billion USD,
respectively.339,340 Most organic waste-derived amino acids
have much higher market values than those for biofuels or NH3
(Figure 2). The potential market demands and higher values
for amino acids should allow higher cost and greater energy
consumption for protein extraction and amino acid production
prior to biomass conversion into bioenergy, and simulta-
neously support the whole biorefinery. Future research,
therefore, should focus more on the development of delicate
chemical or biochemical processes for protein extraction from
biomass, the preserve the original protein structures, and avoid
cross-linking to enable better hydrolysis into amino acids.341

Even though more severe techniques (hydrothermal con-
version and supercritical solvent extraction) may extract
protein with higher yields,342 the quality of proteins may
deteriorate (e.g., loss of functional groups), leading to lower
productivity and selectivity, functionality failure within the
desired amino acid products, or lower quality downstream
value-added polymer products (e.g., polyurethane).21,343,344

Careful attention needs to be paid to the trade-off between
protein yield and protein quality in order to achieve the highest
atom efficiency in the ultimate products.

8. CONCLUSION

Substantial amounts of plant biomass materials are available at
low cost that contain valuable protein and nitrogenous
compounds. Use of these materials in food and feed
applications is limited by the presence of inedible or
nonpalatable constituents. The lignocellulosic fractions of
these biomass sources are good targets for reduced-cost
biofuels production if the N-containing compounds can be
removedideally for other value-added use. Separation of N
from biofuel intermediates is difficult due to the types of N
bonds created during biomass conversion. Rather than
denitrogenation of biofuel intermediates, researchers should
devote more efforts to the preconversion removal of N through

protein extraction methods so that these lignocellulosic
biomass resources can be better utilized to address waste
management, renewable energy, and N cycling issues.
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(300) Álvarez-Viñas, M.; Rodríguez-Seoane, P.; Flórez-Fernández,
N.; Torres, M. D.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H.
Subcritical Water for the Extraction and Hydrolysis of Protein and
Other Fractions in Biorefineries from Agro-food Wastes and Algae: a
Review. Food Bioprocess Technol. 2021, 14 (3), 373−387.
(301) Qin, F.; Johansen, A. Z.; Mussatto, S. I. Evaluation of different
pretreatment strategies for protein extraction from brewer’s spent
grains. Ind. Crops Prod. 2018, 125, 443−453.
(302) Alonso, E. The role of supercritical fluids in the fractionation
pretreatments of a wheat bran-based biorefinery. J. Supercrit. Fluids
2018, 133, 603−614.

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.1c02140
Energy Fuels XXXX, XXX, XXX−XXX

S



(303) Kdidi, S.; Vaca-Medina, G.; Peydecastaing, J.; Oukarroum, A.;
Fayoud, N.; Barakat, A. Electrostatic separation for sustainable
production of rapeseed oil cake protein concentrate: Effect of
mechanical disruption on protein and lignocellulosic fiber separation.
Powder Technol. 2019, 344, 10−16.
(304) Aiello, G.; Pugliese, R.; Rueller, L.; Bollati, C.; Bartolomei, M.;
Li, Y.; Robert, J.; Arnoldi, A.; Lammi, C. Assessment of the
Physicochemical and Conformational Changes of Ultrasound-Driven
Proteins Extracted from Soybean Okara Byproduct. Foods 2021, 10
(3), 562.
(305) Gültekin Subası̧, B.; Vahapoğlu, B.; Capanoglu, E.;
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